KMP算法思想

Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP算法”,常用于在一个文本串S内查找一个模式串P 的出现位置,这个算法由Donald Knuth、Vaughan Pratt、James H. Morris三人于1977年联合发表,故取这3人的姓氏命名此算法。

假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置

  1. 如果j = -1,或者当前字符匹配成功(即S[i] == P[j]),都令i++,j++,继续匹配下一个字符;
  2. 如果j != -1,且当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j]。此举意味着失配时,模式串P相对于文本串S向右移动了j - next [j] 位。
    换言之,当匹配失败时,模式串向右移动的位数为:失配字符所在位置 - 失配字符对应的next 值,即移动的实际位数为:j - next[j],且此值大于等于1。

很快,你也会意识到next 数组各值的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀。例如如果next [j] = k,代表j 之前的字符串中有最大长度为k 的相同前缀后缀。

此也意味着在某个字符失配时,该字符对应的next 值会告诉你下一步匹配中,模式串应该跳到哪个位置(跳到next [j] 的位置)。如果next [j] 等于0或-1,则跳到模式串的开头字符,若next [j] = k 且 k > 0,代表下次匹配跳到j 之前的某个字符,而不是跳到开头,且具体跳过了k 个字符。

代码:

public static int KMPmatch(String str1, String str2,int[] next) {
        char[] s1 = str1.toCharArray();
        char[] s2 = str2.toCharArray();

        int s1Len = s1.length;
        int s2Len = s2.length;

        int i = 0;
        int j = 0;

        while (i < s1Len && j < s2Len) {
            //①如果j = -1,或者当前字符匹配成功(即s1[i] == s2[j]),都令i++,j++
            if (j==-1||s1[i] == s2[j]) {
                i++;
                j++;
            } else {
                //②如果j != -1,且当前字符匹配失败(即s1[i] != s2[j]),则令 i 不变,j = next[j]
                //next[j]即为j所对应的next值
                j = next[j];
            }
        }

        if (j == s2Len) {
            return i - j;
        } else {
            return -1;
        }
    }

构造 next 数组

构造方法为:next[i] 对应的下标,为 P[0...i - 1] 的最长公共前缀后缀的长度,令 P[0] = -1。 具体解释如下:

例如对于字符串 abcba:

  • 前缀:它的前缀包括:a, ab, abc, abcb,不包括本身;
  • 后缀:它的后缀包括:bcba, cba, ba, a,不包括本身;
  • 最长公共前缀后缀:abcba 的前缀和后缀中只有 a 是公共部分,字符串 a 的长度为 1。

所以,我们将 P[0...i - 1] 的最长公共前后缀的长度作为 next[i] 的下标,就得到了 next 数组。

构造next数组.png

代码递推计算next 数组

  1. 如果对于值k,已有p0 p1, ..., pk-1 = pj-k pj-k+1, ..., pj-1,相当于next[j] = k。
    此意味着什么呢?究其本质,next[j] = k 代表p[j] 之前的模式串子串中,有长度为k 的相同前缀和后缀。有了这个next 数组,在KMP匹配中,当模式串中j 处的字符失配时,下一步用next[j]处的字符继续跟文本串匹配,相当于模式串向右移动j - next[j] 位。
  2. 下面的问题是:已知next [0, ..., j],如何求出next [j + 1]呢?
    对于P的前j+1个序列字符:
  • 若p[k] == p[j],则next[j + 1 ] = next [j] + 1 = k + 1;
  • 若p[k ] ≠ p[j],如果此时p[ next[k] ] == p[j ],则next[ j + 1 ] = next[k] + 1,否则继续递归前缀索引k = next[k],而后重复此过程。 相当于在字符p[j+1]之前不存在长度为k+1的前缀"p0 p1, …, pk-1 pk"跟后缀“pj-k pj-k+1, …, pj-1 pj"相等,那么是否可能存在另一个值t+1 < k+1,使得长度更小的前缀 “p0 p1, …, pt-1 pt” 等于长度更小的后缀 “pj-t pj-t+1, …, pj-1 pj” 呢?如果存在,那么这个t+1 便是next[ j+1]的值,此相当于利用已经求得的next 数组(next [0, ..., k, ..., j])进行P串前缀跟P串后缀的匹配。

如下图所示,假定给定模式串ABCDABCE,且已知next [j] = k(相当于“p0 pk-1” = “pj-k pj-1” = AB,可以看出k为2),现要求next [j + 1]等于多少?因为pk = pj = C,所以next[j + 1] = next[j] + 1 = k + 1(可以看出next[j + 1] = 3)。代表字符E前的模式串中,有长度k+1 的相同前缀后缀。

next数组1.jpg

但如果pk != pj 呢?说明“p0 pk-1 pk” ≠ “pj-k pj-1 pj”。换言之,当pk != pj后,字符E前有多大长度的相同前缀后缀呢?很明显,因为C不同于D,所以ABC 跟 ABD不相同,即字符E前的模式串没有长度为k+1的相同前缀后缀,也就不能再简单的令:next[j + 1] = next[j] + 1 。所以,咱们只能去寻找长度更短一点的相同前缀后缀。

next数组2.jpg

结合上图来讲,若能在前缀“ p0 pk-1 pk ” 中不断的递归前缀索引k = next [k],找到一个字符pk’ 也为D,代表pk’ = pj,且满足p0 pk'-1 pk' = pj-k' pj-1 pj,则最大相同的前缀后缀长度为k' + 1,从而next [j + 1] = k’ + 1 = next [k' ] + 1。否则前缀中没有D,则代表没有相同的前缀后缀,next [j + 1] = 0。

那为何递归前缀索引k = next[k],就能找到长度更短的相同前缀后缀呢?这又归根到next数组的含义。我们拿前缀 p0 pk-1 pk 去跟后缀pj-k pj-1 pj匹配,如果pk 跟pj 失配,下一步就是用p[next[k]] 去跟pj 继续匹配,如果p[ next[k] ]跟pj还是不匹配,则需要寻找长度更短的相同前缀后缀,即下一步用p[ next[ next[k] ] ]去跟pj匹配。此过程相当于模式串的自我匹配,所以不断的递归k = next[k],直到要么找到长度更短的相同前缀后缀,要么没有长度更短的相同前缀后缀。如下图所示:

next数组3.jpg

所以,因最终在前缀ABC中没有找到D,故E的next 值为0:
模式串的后缀:ABDE
模式串的前缀:ABC
前缀右移两位:ABC

读到此,有的读者可能又有疑问了,那能否举一个能在前缀中找到字符D的例子呢?OK,咱们便来看一个能在前缀中找到字符D的例子,如下图所示:

next数组4.jpg

给定模式串DABCDABDE,我们很顺利的求得字符D之前的“DABCDAB”的各个子串的最长相同前缀后缀的长度分别为0 0 0 0 1 2 3,但当遍历到字符D,要求包括D在内的“DABCDABD”最长相同前缀后缀时,我们发现pj处的字符D跟pk处的字符C不一样,换言之,前缀DABC的最后一个字符C 跟后缀DABD的最后一个字符D不相同,所以不存在长度为4的相同前缀后缀。

怎么办呢?既然没有长度为4的相同前缀后缀,咱们可以寻找长度短点的相同前缀后缀,最终,因在p0处发现也有个字符D,p0 = pj,所以p[j]对应的长度值为1,相当于E对应的next 值为1(即字符E之前的字符串“DABCDABD”中有长度为1的相同前缀和后缀)。
综上,可以通过递推求得next 数组,代码如下所示:

public static void GetNext(String p,int next[])
    {
        int pLen = p.length();
        next[0] = -1;
        int k = -1;
        int j = 0;
        while (j < pLen - 1)
        {
            //p[k]表示前缀,p[j]表示后缀
            if (k == -1 || p.charAt(j) == p.charAt(k))
            {
                ++k;
                ++j;
        // 未优化之前的代码
        next[j] = k; 

        // 优化next数组代码
                //if (p.charAt(j) != p.charAt(k))
                //    next[j] = k;   //之前只有这一行
                //else
                //    //因为不能出现p.charAt(j) = p.charAt(next[j]),所以当出现时需要继续递归,k = next[k] = next[next[k]]
                //    next[j] = next[k];
            }
            else
            {
                k = next[k];
            }
        }
    }

参考

摘抄自:

很详尽KMP算法(厉害)

最后修改:2022 年 12 月 20 日
如果觉得我的文章对你有用,请随意赞赏